Character Region Identification from Cover Images Using DTT

نویسنده

  • Lixu Gu
چکیده

A robust character region identification approach is proposed here to deal with cover images using a differential top-hat transformation (DTT). The DTT is derived from morphological top-hat transformation (TT), and efficient for feature identification. This research is considered as a fundamental study for auto-classification of printed documents for organizing a Digital Library (DL) system. The entire procedure can be divided into two steps: region classification and character region identification. In the first step, a source gray image is segmented by a series of structuring elements (SE) into sub-images using the DTT. Since the widths of regions are relative to the scales of the characters, the different scales of characters are classified into the series of sub-images. The character region identification processing is composed of feature emphasis, extraction of candidate character regions and region reconstruction processing. Feature emphasis processing reduces noises and emphasizes characters in the sub-images, and then the candidate character regions are extracted from the gray scale sub-images by a histogram analysis. Lastly, a morphological image reconstruction algorithm based on conditional dilation is introduced to make the extracted character regions distinct from noises. To demonstrate the robustness of the proposed approach, 30 gray scale cover images were tested in the experiments, which revealed that an average extraction rate of 94% has been achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

Study on the Trend of Range Cover Changes Using Fuzzy ARTMAP Method and GIS

The major aim of processing satellite images is to prepare topical and effectivemaps. The selection of appropriate classification methods plays an important role. Amongvarious methods existing for image classification, artificial neural network method is ofhigh accuracy. In present study, TM images of 1987, and ETM+ images of 2000 and 2006were analyzed using artificial fuzzy ARTMAP neural netwo...

متن کامل

IRS-1C image data applications for land use/land cover mapping in Zagros region, Case study: Ilam watershed, West of Iran

In land use planning, mapping the present land use / land cover situation is a necessary tool for determining the current condition and for identifying land use trends. In this study, in order to provide a land use/ land cover map for Ilam watershed, the IRS-1C image data from 25th April 2006 were used. Initial qualitative evaluation on data showed no significant radiometric error. Ortho-rectif...

متن کامل

Evaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping

In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004